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1. Phys.: Condens. Matter 7 (1995) 2697-2716. Printed tn the UK 

Scanning tunnelling spectroscopy of unoccupied surface 
resonances at free-electron-like metal surfaces 

T Fondhi ,  S Papadiat and M Perssons 
Department of Applied Physics, Chalmers University of Technology, S-412 96 Gateborg, 
Sweden 

Received 23 August 1994, in find form 16 January 1995 

Abstract. We extend and detail a previously developed model for farmarion of electronic 
resonances at free-electron-like metal surfaces, in order to calculate scanning tunnelling (ST) 
spectra The effect of the tip is mimicked by inclusion of an external field, self-consistently. in 
a jellium description of the surface potential. The lattice-induced cormgation of the potential is 
included pelturbatively via a pseudopotential. We compare our calculated ST spectra for Al(111) 
with experimental spectra for that surface and conclude t h a  a pe& occumng below the metal 
vacuum level is a 'crystal-derived' resannnce. in the sense that lattice effects are crucial for its 
manifesration. 

1. Introduction 

The investigation of unoccupied electron states at surfaces is  crucial for our understanding 
of phenomena taking place at surfaces, such as scattering of electrons, atoms and ions 
[ 1,2, 3, 41 and vacuum tunnelling [S, 6, 7, 81. A particular type of such a state is the image 
potential-induced series, produced when an electron is trapped in a potential well defined 
by the image potential part of the surface barrier on the vacuum side, and a projected 
band gap on the crystal side 191. Experimentally, image potential states have been studied 
mainly by low-energy electron diffraction (LED) and inverse photoemission spectroscopy 
(IPE) [IO, 11. 121 and preferably at surfaces where a projected band gap exists at or close 
to the energy of the series. Theoretically, the existence of a high substrate reflectivity, as 
e.g. given by the presence of a band gap. has been crucial for the building up of an image 
state as described in multiple-scattering models [l. 21. At energy ranges outside a metal 
band gap, the image states broaden into resonances and eventually cease to be resolvable 
by experimental means. 

There are though experimental evidence and theoretical support that resonances persist 
at energies surprisingly far from band gaps. IPE spectra [ 121 of Al( 11 I), where no projected 
band gaps exist in the probed region, revealed a spectral feature close to the vacuum level 
which was suggested to be an image resonance. Several authors provided calculations in 
favour of that explanation [13, 14, 151 with different viewpoints. The interpretation of IPE 
features close to the vacuum level in terms of the surface density of states (SDOS) was 
subsequently questioned by Schaich and Lee [16] who interpreted the spectral features 
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as due to a matrix element effect, with no direct coupling to the SDOS of the metal. 
The calculations by Schaich and Lee [ 161 motivated further complementary studies of the 
unoccupied electronic states of free-electron-like metals. 

The scanning tunnelling spectroscopy (STS) technique has been suggested as a possibility 
of obtaining information about the surface electronic structure [17, 18, 19, 201. This 
spectroscopy has been proven to be able to give information for surface states on graphite 
[I91 and Si [20]. It has also been asserted that STS provides identification of the image state 
spectrum on metals [5 .  211. In such experiments, the normalized conductance is recorded, 
often in a constant-current mode where the bias is varied under the condition of keeping 
the tunnel current constant. These curves are then related to the electronic states of the 
substrate within different theories. 

We will in  the following present a model for interpretation of conductance cuwes, which 
is an extension of the model in 1141, and we demonstrate how peaks in the STS curves are 
connected to SDOS features of the substrate. Application of the model to Al(111) and 
comparison between STS and theoretical calculations demonstrate several resonances in the 
SDOS. In particular, we show that there is one resonance, below the metal vacuum level, 
which shows up in STS because of lattice effects-it is a 'crystal-derived' resonance. In 
this paper, we also correct an error in the evaluated phase shift within our model, made 
in our previous analysis [14, 221. The basic conclusions are still valid but the calculated 
resonance positions are lowered in energy. Finally, the crystal reflectivities obtained in our 
model and in a two-band model 1151 are compared and it is found that the two-band model 
underestimates the crystal reflectivity at energies far from the considered band gap. 

The paper is organized as follows. In section 2, we present the different steps in our 
model. First, the construction of the potential between tip and substrate in the tunnelling 
geometry is described in subsection 2.1: the effects of the scattering from the ion core 
lattice are included in the expressions for the current density and in the expression for the 
substrate density of states, described in subsections 2.3 and 2.4, respectively. We present 
and discuss our results in section 3 by first comparing our calculated conductance curves 
with our calculated sDOS, obtained for different initial conditions in experiments; then we 
compare the calculated conductance to experimental conductance curves for AI( I 1  1). A 
summary is given in section 4. In the appendix, we present the detailed derivation of the 
crystal reflectivity and a comparison is made to the reflectivity obtained in a two-band 
model. 

2. Model 

Our calculations are based on a quasi-one-dimensional model where the starting point for 
the modelling of both the sample and the tip is the jellium model for a metal surface. 
This is motivated by the use of rather blunt tips in STS experiments. The calculated 
current densities in such a one-dimensional model should thus give a fair description of 
the actual experimental situation. In the following, we describe our model for the tip- 
sample interface potential and the calculation of the reflectivity from the sample crystal 
potential in detail. In addition we show how the tunnelling current and the surface-induced 
DOS are calculated using the obtained interface potential and crystal reflectivity. If not 
explicitly stated otherwise, Hartree atomic units are used throughout where h = m = e = 1 
(m is the electron mass). 
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2.1. Potential construction 

We model the interface potential for the scanning tunnelling experiment on Al(111) for 
large initial separations between the tip and sample of typically 15-75 A. In this situation, 
we expect to have a linear region in the interface potential for a constant extemal electric 
field F. The interface potential, V,(z) ,  may then be decomposed into a tip and a sample 
part which are treated separately. This decomposition is not justified at short distances, e.g., 
below 5 A where the barrier does not have a linear part, as can be seen in the work by Lang 
[23]. The potentials, V,(z )  and V&), of the isolated tip and sample, respectively, are both 
modelled by the potential Vo(z; &Fex) of a semi-infinite jellium (z -+ -m in the bulk) in 
external uniform electric fields &Fat, with an electron gas density parameter, r, = 2.07a0, 
appropriate for aluminium. The potential V& F,J is calculated self-consistently, in 
the density functional scheme [24] as applied by Schreier and Rebentrost 1251, using the 
boundary condition that the electric field F should be uniform and equal to 2FeXt far from the 
surface. The details of the approximation for the exchangecorrelation part of the potential 
are given at the end of this subsection. For the sample, V&) = Vo(z; Fat) gives rise to 
a repulsive and confining potential, while for the tip, V,(z) = VO(Z; -Fe,) gives rise to a 
barrier that the electrons can tunnel through. The interface potential is now obtained by 
matching V&) and V,(z) at a point zm in the linear asymptotic region as 

where Os and 0, are the work functions of the substrate and tip, respectively, V is the 
bias, and the tip-sample distance s, measured relative to the jellium edges of the tip and 
sample respectively, is determined by the condition that v(z) should be continuous at zm. 
This matching gives rise to an implicit relation between the distance s, the field F and the 
bias V .  In the particular experimental set-up, the tip is made of Ir that has a work function 
-1.5 eV larger than AI, but it  is very likely that it is covered by AI atoms [26]. As a 
consequence. the contact potential in the experiments may vary between 0 and 1.5 eV. In 
the discussions. we will use the lower limit as an example, corresponding to an AI tip, but 
we will, when comparing to experiments, also present results that account for the maximum 
work function difference of 1.5 eV, corresponding to an Ir tip. This is done by choosing 
0, - = 1.5 eV in equation (2.1) [27]. We will see that the important issue is to have 
a good model of the substrate. A typical interface potential shape obtained as in equation 
(2.1), with QS = @(, is shown in figure 1. Note that we have an extended linear part 
in the interface potential due to the relatively low bias V = 4.0 eV and large tip-surface 
separation s = 17 A. The electric field F = 0.20 eV A-', is close to what is expected from 
an assumption based on an extended region of a uniform electric field between the tip and 
the sample, V / s  = 0.24 eV A-'. 

In order to model the (static) image barrier effects, it is necessary to include the 
long-range image potential of a metal surface. We proceed as proposed by Serena and 
coworkers [28] as follows. The local density approximation (LDA) for the exchange- 
correlation potential V, is used in the bulk and up to the location of the image plane. 
Beyond that, a non-local form for the potential is used, of the form 

where zip is the location of the image plane and b is a parameter chosen to give the LDA 
value for I?:: at zip. The location of the image plane is also calculated self-consistently 
in that the position of the centroid of the excess charge, due to the applied extemal field, 
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Figure 1. Model of sample tip potential, where the Figure 2. Schematic multiple.scattering geomeuy. An 
sample i s  to the left and the tip is to the right. Both tip incident wave 8 with unit flux towards the crystal 
and sample are represented by a semi-infinite jellium is partly reflected at a reference plane. Its reflected 
with r, = 2,07 corresponding to alununium. An pan is given by rcY where re is the (complex) crystal 
ex tend  field F is applied (+F on the sample and reflectivity. This pan is reflected 1 the barrier reference 
-F on the tip), mimicking the effen of the applied plane which has a reflectivity f i .  The multiply scattered 
bias voltagc, The difference in  Fermi energies of tip p m  are summed to give the total wave W,,,,, 
and substrate Em - E m  i s  equal to the bias voltlge 
V .  ?be two self-consistent solutions for a semi-infinite 
jellium in the presence of +F are matched at their 
respective linear p m  which here is around 15 m from 
the jellium edge of the substrate (r = 0). The substrate 
work function Q. (defined for F = 0) and the up bmd 
bottom U, are also indicated. 

is taken as zip at every iteration. When self-consistency is reached, the value of zip is 
stable. This approach yields values for zip that are essentially the same as Lang and Kohn's 
calculated values using linear response of a jellium to a test charge [29]. If exchange 
effects are important, there will be a modification to the results from this treatment 1301. As 
demonstrated by Eguiluz era1 [30], a 'Kohn-Sham' electron 'feels' an image ptane location 
closer to the surface than a test charge does (zo = 0.72 au instead of 1.46 au for r, = 2.07). 
These effects are even more pronounced for larger r, values. 

2.2. Inclusion of sample ion cores 

The scattering of the electrons from the AI sample ion cores is handled perturbatively using 
pseudopotential theory. We confine ourselves to the situation where we are in an energy 
range far from band gaps. Such a situation, and the fact that AI can be represented by a 
weak pseudopotential. suggest a treatment of the scattering of the electrons from the ion 
cores using the Born approximation. The detailed derivation of the reflectivity, rcI in this 
approximation is presented in the appendix, where we also discuss the connection between 
our approach and the standard two-band model. The resulting Born expression for the 
reflectivity of a semi-infinite crystal measured relative to the first lattice plane (see figure 
2 )  is given by 
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Here k and k' are the wavevectors of the incident and scattered wave, respectively, v(k'-k) 
is the form factor, i.e. the Fourier transform of the atomic pseudopotential, a and b are the 
surface basis vectors, and c connects an atom to a neighbouring atom in the next atomic 
layer further into the crystal. In the case of Al(11 l), the area of the surface unit cell is given 
by la x bl = J?;a2/4 and the distance [31] d between crystal planes parallel to the surface 
is d = a/& where a = 7.7 au is the bulk lattice constant of AI. The surface periodicity 
gives the restriction kiI = kl + 911, where glf is a surface reciprocal lattice vector. There is 
no such restriction for the momentum transfer perpendicular to the surface. Note that the 
result for rc in equation (2.3) neglects possible modifications of the form factor for the atoms 
in the surface region and also neglects the possibility of (geometrical) surface relaxation 
[32]. Furthermore, the behaviour of the denominator with momentum transfer explicitly 
shows that this expression breaks down when the transfer comes close to a Brillouin zone 
boundary where a band gap opens up. 

In order to estimate the reflectivity, we have chosen a pseudopotential form factor 
which was originally fitted to the measured phonon dispersion of bulk aluminium [33]. The 
justification for the use of such a pseudopotential is that we are sufficiently close in energy 
to the Fermi level. This pseudopotential reproduces accurately the width of the band gap 
in the (1 11) direction located about 5 eV below E? [34]. In the tunnelling situation we find 
that the effective tunnelling occurs from states with perpendicular energy close to the Fermi 
level, i.e.. kll - 0. Considering then specular reflection of an electron propagating normal 
to the surface, kll = k; = 0 and -k, = k: = k ,  the pseudopotential form factor does not 
v q  much for energies around the vacuum level E - E F  - 4 eV, where 2 k / k ~  M 2.3. For 
this situation, we have from equation (2.3) that, 

(2.4) 

Here, and in the following, the phase shift GC is taken with respect to the jellium edge zo 
and includes thus an extra phase due to the electron motion between the first crystal layer 
and the jellium edge. In previous analyses [14, 221, & was erroneously evaluated as -4n, 
which has consequences on the energy of the resonances but not on their existence. The 
value of Ir,l is around 0.1 as obtained from (2.4), while the actual value of GC is determined 
from the sign of v(Zk)/sin(kd); U(%) is positive and sin(kd) is negative in the described 
situation. The value Ir,l = 0.1 will be used throughout in our calculations. Finally, we 
would like to stress, as shown in the appendix, that a simple two-band model underestimates 
lrel in an energy region far away from a band gap. 

The range of applicability of the result in equation (2.3) is not restricted to aluminium but 
can be applied to other free-electron-like materials. The condition that has to be fulfilled in 
order for the Born expression to be valid is that we apply it in an energy range sufficiently 
far from projected band gaps. However, if the effect of the crystal reflectivity is to be 
noticeable, we need a reflectivity comparable to the one for aluminium. We find similar and 
even larger reflectivities e.g for Pb and Ba. In the case of Pb, there is a band gap with a width 
of -3 eV at 3.5 eV below the Fermi energy, so it may he out of the range of the application 
of the Born approximation. In the case of Ba(100), we have equally favourable conditions 
as in the case of Al(111) so there is a chance to experimentally resolve 'crystal-derived' 
image resonances on that surface. 

2.3. Tunnelling current 

We describe in the following the calculation of the tunnelling current and the conductance 
in our interface potential and show how the effects of the sample ion cores can be accounted 
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for in these calculations by using the calculated crystal reflectivity r,. 

given by the expression [35] 
The tunnelling current density JO for two free-electron systems in a planar geometry is 

where V is the bias, T0(cz) is the transmission amplitude of electrons through the banier 
with an energy, E , ,  normal to the surface. Further, cm = EFS + V and cm are the Fermi 
energies of the tip and the sample, respectively, and U, is the energy of the tip band bottom. 
All energies are measured relative to the vacuum level, cYuc = EFS + 0,. of the field-free 
sample, where Qs is the work function of the sample. The first term gives the contribution 
to JO from tip electrons tunnelling into unoccupied states of the sample and the second term 
the net contribution to JO from tip and sampfe electrons tunnelling between occupied states. 
Before we show how the effects of the crystal potential influence the tunnelling current, 
we will first show that, in the situation of interest, the dominant contribution to JO comes 
from electrons with cL within a few tenths of an eV from cm (kll - 0). In particular the 
contribution from the second term in (2.5) to JO is negligible. 

The transmission amplitude, TO(& has been determined from the electron 
wavefunctions in V,(z) by a direct numerical integration of the one-electron Schrodinger 
equation based on a modified midpoint method and Richardson extrapolation [37]. The 
boundary conditions in a potential like that in figure I for electron wave functions through 
the harrier are 

where r ( Q  is the amplitude of the reflected wave on the tip side and ?(e , )  the amplitude of 
the transmitted wave on the substrate side. We have that the momentum kl  = d m  
and k l =  ,/- where U,  is the energy of the substrate band bottom. The transmission 
coefficient is then given by ITO(E,)I~ = ( k z / k l ) l t I 2 .  

At the tipsample distances, s, and biases, V, appropriate for the scanning tunnelling 
expcriment, we obtain typically very small transmission probabilities for the tip electrons. 
For instance, under the conditions prevailing in figure 1, we find that I T o ( c ~ ) l ~  - 
Such a small I T o ( E F T ) ~ ~  suggests that the magnitude can be understood from a single-bounce 
w m  approximation for the penetration of the electron wave through the barrier. In this 
approximation, the transmission probability through the barrier is given by 

IT~KB(cz)12 - e-w (2.7) 
where 

and 21 and zz are the classical turning points in the t ipsample interface potential V,(z) of 
an electron with energy cl normal to the surface. The behaviour of W can be understood 
from a trapezoidal model for the barrier potential, which gives 

where Q, is the workfunction of the tip. In the (field emission) region V t @$, the 
tunnelling distance, st = z2 - Z I .  varies with F, w*hile in the region V < Os, s, is constant 
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and equal to the tipsample distance s. An estimate of the magnitude of the transmission 
probability based on (2.7H2.9) with Ot = Qs and for conditions as in figure 1 gives 
ITTKB(cm)l* - lo-'' which is about the same magnitude as the calculated value. 

8.0 
ITJ' 

Figure 3. Energy variation of the calculated 

bottom of the band is at - 11.7 eV. 
-8 -7 -6 -5 4 -3 -2 -1 0 msmission coefficient for an AI 'tip'. The 

€.EF (ev) 

(2.10) 

D 7.0 I 0 l Q  

60 10'Q 

5.0 10" 

4.0 10" 

3.0 IOLQ 

20 10'0 

1.0 10'Q 

0 

The WKB result in (2.7) and (2.8) shows also directly that li"~(e~)l~ will increase rapidly 
with c2 due to a decreasing magnitude of the negative kinetic energy in the barrier. A Taylor 
expansion in E around EFT of the action integral in (2.8) gives 

[~?*(c~)12 - ITOWKB(Em)~*e-(~~-f::) /A 

where 

(2.11) 

An application once again of the trapezoidal model to Y ( z )  gives the estimate 

Under the conditions in figure 1, we find from the estimate in (2.12) a small value for A, 
about 0.1 eV, due to a large st % 17 A, which suggests that the tunnelling is dominated 
by electrons in  states with eZ close to cm. Correspondingly, kll is close to zero. The 
prefactor em - ci in the first term of (2.5) vanishes exactly at the Fermi level due to the 
vanishing density of states at E ,  = cm which makes the tunnelling dominated by states with 
ei % cm - A. The calculated ( E R  - e,)ITo(c,)1', shown in figure 3, clearly demonstrates a 
behaviour of rapid exponential decrease with decreasing cZ over just a few tenths of an eV. 
We estimate A as 0.15-0.2 eV. Hence, the second term in (2.5) is negligible and the first 
term can accurately be represented by the approximation 

(2.13) 

where A is now obtained from the exponential decrease of the calculated IT0(cJ2. In 
practice. we have already shown that A is so small that it can be ignored in the argument of 
the transmission coefficient in (2.13). Furthermore, the results from the simple trapezoidal 
model, equation (2.12), shows that A will not be exponentially dependent on s, like the 
transmission probability, and can be assumed to be constant in the calculation of Jo. 
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We demonstrate further how the effects of the sample ion cores modify the tunnelling 
current. In principle, we need to calculate the current carried by the Bloch wave propagating 
into the sample. This is done here by noting that, from particle conservation, this current 
is given by 1 - lrc12 times the current of the wave incident on the crystal. The multiple 
scattering of the electron wave between the crystal potential and the barrier potential (see 
figure 2) results in an amplification of the wave incident on the crystal with the factor 
1/(1 - rbrs). Hence, the transmission coefficient in this situation is simply obtained by 
multiplying 1To1' with 

(2.14) 

where rb is the reflection amplitude of an incoming wave From the sample on the barrier. 

obtained by collecting the results in (2.13) and (2.14) and is given by 
The final result for the tunnelling current density J that we use in our calculations is 

(2.15) 

where A$ is assumed to be constant and A is neglected in the argument of the 
transmission coefficient. The current density J in (2.15) depends on two indepcndent control 
parameters-the tip-sample distance s and the bias V-through the interface potential and 
the argument CFS + V. 

Scanning tunnelling experiments often record the conductance versus bias, (di/dV)-V, 
in a constant-current mode, i.e.. the bias is varied under the condition that the current is 
constant. Since we are only able to calculate current densities in ow planar model, we 
make a comparison between the observed ( d l j l  dV)-V in a constant-current mode and the 
calculated ( d J / J  d V - V  in a constant-current-density mode. The latter quantity has been 
calculated in the following way: (i) for initial V and J which fixes F and s, dJ /dV is 
calculated using (2 .13 ,  upon a small change of V by AV; (ii) V is increased and F and 
s are adjusted so that J across the new barrier is the same within 3% of thc original J ;  
(iii) d J /dV is then calculated as in (i) for this new V. A smaller tolerance than 3% in the 
current gives no change in the resulting curves and the functional dependence of V,(z) on 
F is obtained by an interpolation between potentials calculated for a set of different fields. 

2.4. Su$ace densip of states 

Since we are in a regime where the dominant contribution to the tunnelling comes from 
slates with tZ close to EFT = EFS + V, we attempt to relate d J / J  dV to a surface DOS of the 
sample i n  the presence of a positive external uniform field. In order to do that. we need 
first to define the surface DOS for electrons with kl, = 0 and show how it is influenced by 
the crystal reflectivity. 

In a situation where we are concerned with the scattering of electrons that are incident 
normal to the crystal, the propagation is described by a one-dimensional potential, V,(z). 
The surface density of states n,(c) of the surface region, z > 20, is then defined as an 
integral over the local DOS, 

n,(c)  = p(z;  c)dz  (2.16) 

where the local DOS, p(z; c), is determined from the retarded Green function, g(z, z'; c), of 
L: 

Vdz) as 
I 

P(z; E )  = --Im ?I g(z, z; E ) .  (2.17) 
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Note that we have explicitly excluded the spin degeneracy in (2.16). We evaluate p(z; E) 
in (2.17) using a standard representation of the Green function [36] and we arrive at: 

(2.18) P ( Z :  E )  = R(E)Po(z; C) 

where 

(2.19) 

and @ = & + &. Note that R(E) is independent of z. Here po(z; E )  is the local DOS when 
r, = 0 and is given by 

(2.20) 

where $,(z) is the wave function on the barrier side. Similar expressions for p(z; E) have 
also been given by Radny [38] using a semiclassical approach. In the evaluation of the 
integral in (2.16) over p(z; E ) ,  we use a method introduced by Echenique and Pendry [ l ,  91 
which is based on introducing an infinitesimal absorption in the Schrodinger equation. An 
application of this method to the integral over [@,(z)12 gives 

(2.21) 

The term (sin&)/2€ comes from the interference between the incident and scattered wave 
from the banier [39] and is dependent on the position of 20. Using the result in (2.21) and 
the definition (2.16) of n , ( t )  we obtain, in the absence of a crystal reflectivity, rc = 0, 

2E 
(2.22) 

and in !he situation of a non-zero crystal reflectivity, 

n, (c )  = R(t)n;(E). (2.23) 

Hence, all the effects of the crystal reflectivity both on surface and local DOS are just 
included in R(E) as defined in (2.18). Note that we have a similar result for the effects on 
the transmission coefficient in (2.14) through the factor &,,(E). This factor differs only 
from R(E) by the fact that r b  is defined in (2.14) for V,(z) while in (2.19) it is defined 
for VJz). The differences between r b  are very small in these two situations since the 
transmission coefficient is very low through Vj(z). 

In the calculations of n,(6)  and np(c), the barrier phase shift, &, and its energy 
derivative are obtained from the wavefunctions calculated numerically from the one-electron 
Schrodinger equation in Vs(z). The magnitude of the crystal reflectivity IT,[ and its phase 
shift, &, have been extracted from equation (2.4). 

3. Results and discussion 

We begin by presenting tunnelling spectra, d J /  J dV calculated in a constant-current-density 
mode in the tip-sample interface potential. These spectra are then related to the surface 
electronic structure of !he sample potential in the presence of a static external field by 
examining the calculated surface density of states, ns(E),  for electrons with kl = 0. In 
particular, we study the effects of the crystal reflectivity on the tunnelling spectra and 
compare to the surface density of states. Finally, we make a direct comparison of the 
calculated tunnelling spectra with experimental data. 
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3.1. Calculated funnelling spectra 

The most important point of our work is the peak at V below Q, in the calculated 
(dJ/JdV)-V curves, as shown in figure 4, which is present only when the effects of 
the crystal reflectivity are included. This peak has a completely different origin from the 
oscillatory structure for biases V larger than 0,. It is a ‘crystal-derived’ barrier resonance 
formed by a reflection back and forth of the electron wave from the crystal and the barrier. 
The precise position in V of this resonance below 0, is dependent on the behaviour of & 
and &,. 

60.0 

3 
7 
7. 

40.0 

F = 0.20 eV/A 

o r,=O.i 

3.0 4.0 5.0 6.0 
Bias (eV) 

F i p  4. Tunnelling cumcs, 
(dJ/JdV)-V. for a system of an 
Ir tip a d  an AI(I I I )  substrate for 
nn initinl field slrength of 0.20 eV 
A, with and without inclusion of 
the cryslal pseudopotential. It is 
only when the crystal reflectivity is 
taken into accou~~t that we get a 
conductance peak below lhe metal 
vacuum level (3.87 eV). The lines 
connecting lhe calculated points are 
cubic spline interpolations. 

The oscillatory structure in the calculated (dJ/JdV)-V curve for V > Os is, as 
shown, present independent of crystal effects of the sample. This kind of oscillation has 
been previously identified both in scanning tunnelling experiments [5, 61 and in theoretical 
models similar to our model [7, 21,401. The issue of the characterization of this oscillatory 
structure in terms of ‘field-induced’ resonances has been brought up earlier [5, 6.7,21] with 
different viewpoints. Binnig el a! [SI and Garcia er a1 [Zl], interpreted all peaks as being a 
Stark-shifted Rydberg series, whereas Becker and coworkers [6] presented their results as 
standing waves formed between the probe and the sample, as Gundlach resonances [41], 
having nothing to do with surface electronic states. We will come back to the nature of 
these oscillations in the discussion of field effects on surface Dos. 

In order to justify the approximation (2.15) that we use in the calculation of (dJ/J  dV)- 
V curves, we examine the calculated curves more closely. In figure 4, the constant J 
mode corresponds to having a constant IT(cm)Iz. At the Iowest bias of V = 2.8 eV, we 
have IT(EFT)I~ = and s = 15 8,. While keeping I T ( t ~ f ) l ~  constant with varying V 
(2.8 < V < 6.8 eV), s increases from 15 to 42 8, and F increases (in an oscillatory manner) 
from 0.17 to 0.21 eV A. This behaviour is in line with what is expected from the WKB 
treatment of the trapezoidal model introduced in section 2.1: according to (2.7), IT(CFT)I~ 
is governed by the tunnelling distances, when V > and s has to increase almost linearly 
with V in order to keep st constant. This variation of s with V also makes F stay more 
or less constant. The largest variation of F in our calculations occurs accordingly at low 
biases, while it  varies much more slowly for V > Os. More importantly, this behaviour of 
s( and F with V in the constant-J mode is consistent with the approximation of keeping A 
constant according to the WKB-result in (2.12) which is a crucial test of our approximation. 
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Moreover the effects on J due to the broadening and shift from A sz 0.2 eV which is 
neglected in (2.15) is much smaller than the energy scale for the structures in the calculated 
(dJ/JdV)-V curve which are -I eV. 

Our approximate expression for the current density in (2.15) is thus well justified and 
shows that J reveals the sample electronic structure at an energy EFS + V. The reflection 
coefficient from the barrier part of V,(z) at the energy EFS + V will be very close to the 
corresponding coefficient for V&) with the same F. We can then relate the (dJ/JdV)-V 
curves directly to the surface DOS, of Vs(z) at a fixed F. 

8 
0 I O -  
v ) '  

3.2. Calculated Surface DOS 

There is a clear one to one correspondence between the peaks in the calculated ( d J  f J dV)- 
V curves in figure 4 and n,(6) of V&), as calculated at fixed F, in figure 5 .  When the 
lattice effects are switched on, a 'crystal-derived' peak occurs below the vacuum level 
and the peaks above the vacuum level narrow and shift slightly to lower energies. The 
oscillatory structure due to the 'field-induced' resonances is also present at energies above 
cFs + Qs, This fact shows that the tunnelling spectra curves can be understood in terms 
of the density of states of the surface where the tip has been replaced by an external field. 
We begin by discussing the image resonances in ns(e)  for zero external field and end by 
a discussion of how these resonances are modified in the presence of an external field. In 
particular we will show that the 'crystal-derived' barrier resonance in n,(e)  comes from the 
multiple scattering between the crystal and the surface barrier. 

___ 
Agure 5. Surface density of states o f  
the AI( I 1  I )  sample in the p r y n e e  of 
an ext." field F = 0.2 eV A. The 

- ". 
",O 

E, i 
. .  

' ' O  1 
F = 0.20 eV/A 

/ 

A 1 

field strength. F is kept constant for 
all energies. In n,(s ) .  the reflectivity 

3.2.1. Analysis ofthefield-free case: F = 0. The effect of the scattering between the crystal 
and the surface barrier on ns(6) is described by the prefactor, R ( E ) ,  in (2.23). The spectral 
features of ?ar(€) are directly understood from the behaviour of R(6) .  At values of Ir,l well 
below 0.5 like in our case where we are far from a band gap, R ( E )  is well approximated 
by only including a single scattering event from the crystal, 

R(E)  1 + 21rClcos@(6) (3.1 ) 

where the weak energy dependence of lrcl has been ignored. In this situation, R ( E )  and thus 
ns(E) will show an oscillatory behaviour with a series of maxima at energies E ,  determined 
by a phase condition corresponding to constructive interference as 

@ ( E m )  @ d c m )  +@ce(Em)  = 2 ~ m  (3.2) 



2708 T Fondin et a1 

where m is an integer. The well known divergence of & for an image barrier at the 
vacuum level results in a Rydberg series of maxima with decreasing separation, converging 
to E,, [ 1 I]. Using an appropriate WKB approximation for & for an image potential [ 1 I], 
and the phase condition in (3.2), a Rydberg series is obtained as 

8.0 

6.0 
a, 

W 
- 

I 
32(m + Em = 6, - 

x 

x 
- x 

x x  
x x x  x x x  - x : . , . "  

x 

x x 

4.0-.!?.% ...... X .................................................................................................. 

(3.3) 

Here the energy variation of q5c has been neglected and Q = 4 (1 - &/K). The phase shift 
in the Born approximation. & = K. gives that the lowest member in the image series lies 
at -0.85 eV below E,,,, which is close to - - I  eV that we obtain in our surface barrier 
model. This difference can be understood from the fact that the image plane position zip in 
our model lies at -1 .5~0  instead of zip = 0, which gives rise to a larger barrier phase shift 
&. Finally, we note that in a situation where lrcl is close to one [42] e.g. close to a band 
gap, the maxima of R ( c )  turn into narrow Lorentzian resonance peaks at the same energies 
Em. 

3.2.2. Effects of M externulfieldt F # 0. In figure 6, the energies of the SDOS resonances of 
Al(11 I )  are shown as a function of field strength. When turning on the electric field F ,  Vs(zf 
increases in the surface region which in turn, gives an overall decrease and convergence of 
q5b to a finite value at cvaC since the classical turning point of the barrier potential is finite 
for all E .  This effect limits the number of members in the image series below EI;S + Qs, 
i.e. the vacuum level for F = 0, and shift up their energies with increasing F .  This fact is 
demonstrated by figure 6 where there exists only one barrier resonance even down to field 
strengths as low as 0.05 eV A. This resonance is by us referred to as a 'crystal-derived' 
barrier resonance since it disappears when the reflectivity from the crystal is switched off as 
shown in figure 5. The members of the image series which shift up above 6 p S  + Qs for finite 
F have changed their character into 'field-induced' resonances since their energy position 
will now be determined by the contribution to & from the linear part of the potential. 

10.0 , I 

x x x x x x x  
2.0 t Figure 6. Energies of the res- 

onances in the surface density of 
smes of AUIII) as a function of . .  I 1 the applied (static) field strength. 

I  he energy position of the 'crystal- 
0.w 0.10 0.20 0.30 derived' (image) resonmce for the 

field-free case is also indicated. 

0.0 ' 
F (eV/A) 

In contrast to the 'crystal-derived' barrier resonance or the image resonances, it is not 
necessary for the existence of 'field-induced' resonances that there is a non-zero reflectivity 
from the crystal. The sharp variation in the surface barrier potential, when going from bulk 
to the linear region of the Vs(z), is sufficiently rapid, compared to the wavelength of the 
electron, to give rise to a non-zero reflectivity of an electron wave incident on this part of 
barrier from the linear region of Vs(z). Such a behaviour cannot be understood in the WKB 
approximation as stressed, e.g., by Gundlach [41]. 
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We can make a closer analysis of the behaviour of the ‘field-induced’ resonances by 
finding a similar &E) to R ( E )  that describes these resonances. Such a factor can be found 
from equation (2.19) simply by changing the location of ZO to a position ZO in the linear 
region of V,(z)  whereby r, and rb are modified to 7, and ?b. The reflectivity, FC, includes 
now also the reflectivity of the electron waves from the rapid variation of V,(z )  around the 
jellium edge of the sample, earlier included in rb. The result in (2.18) is also valid in this 
situation and the local DOS can be expressed as 

p ( z ;  E )  = E ( E ) h ( Z ;  E )  (3.4) 
where ,&(z; E )  is determined as in (2.20) from a wave function $ , ( z )  cx q,(z) but with 
an incident amplitude of unity at i = io on the barrier. All the ‘field-induced’ resonances 
in nS(c)  will now be described by k(t). The calculated I Z : ( E )  in figure 5 shows that we do 
not have any narrow resonances whose width is much less than the level separation. Hence, 
also in this case we have a small value for IFc[ due to the reflection of Vs(z)  at the selvedge 
and the linesbape is given by an oscillatory function like in (3.1). A small value for Ifcl in 
this situation is consistent with the observation that the inclusion of the crystal reflectivity 
makes the amplitudes of the ‘field-induced‘ resonances increase by more than a factor of 
two. The non-linear variation of the ‘field-induced’ resonance energies with F as shown in 
figure 6 can be understood from the behaviour of & with respect to F .  We evaluate the 
WKB approximation for & in a linear repulsive potential V&O) + F ( z  - 2 0 ) .  The resulting 
approximate phase shift is then given by 

4f i  II 
& ( E )  cj 3T - - 

2 ’  (3.5) 

If the energy variation of & is neglected, we obtain directly from (3.2) the approximate 
resonance energies (relative to Vs(Zo)), 

3n =I3 
E ,  (3) F21’(m + a + 

where 01 is determined from &. For instance, in the case of a triangular well with an infinite 
potential banier at z = io, 01 is equal to -4.  The non-linear power law behaviour of e, with 
F in (3.6) with an exponent less than one fits the calculated variation of the ‘field-induced’ 
resonances in figure 6. Best agreement is obtained for the high-lying resonances. 

3.3. Comparison with experiments 

The prime objective with the comparison of the results from our one-dimensional potential 
model with the measured tunnelling spectra on Al(111) is to show that one of the observed 
peaks in the measured spectra originates from the ‘crystal-derived’ barrier resonance of the 
sample potential. Since the work function of the Ir tip is unknown due to its likely covering 
by AI atoms, we will discuss the experimental data in relation to results both from an Ir 
and an AI tip model. 

The experimental tunnelling spectra are recorded in a constant-current mode under 
different initial tunnelling gap distances, corresponding to several values of the tunnelling 
current. The relative change in distance with bias i s  known experimentally, but the initial 
gap distance cannot be determined. Spectra for current values in the range 4-102 PA 
are shown in figure 7. Two peaks are clearly discernible in all spectra and at the lowest 
tunnelling current even a third peak can be resolved at higher biases. An increase of the 
bias from 4 to 7 eV at I - 100 pA corresponds to an increase of about 14 8, [26].  This 
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75)  , I I 

Figure 7. Experimenwl differential conducwnce 
curves for runnelling currenu of 4-102 PA. recorded 

45 in a constant-current mode, 
-1 0 1 2 3 

Energy above +,(eV) 

observation in the field emission region of the tunnelling suggests that the field strength is 
about 0.2 eV A. In figure 8, we have consequently presented results of ( d J / J  dV)-V in 
the JI tip model for a set of initial field strengths. 0.20, 0.25, and 0.30 eV A, and for the AI 
tip model for a field strength of 0.20 eV A. Note that there are no differences in the peak 
positions for the two models [43]. 

The calculated and measured tunnelling spectra agree in important ways. The observed 
peak separations in the measured (d l / ldV)-V are well reproduced by the narrow range 
of field strengths of 0.2 to 0.25 eV A in the calculated (dJ/JdV)-V. The calculated data 
reproduce also nicely the observed shift of the peak positions to higher V with increasing 
I ,  corresponding to higher J in the calculations. The shift of the peak positions to higher 
V with increasing I is understood in our modcl from the fact that an increase of J at a 
fixed V corresponds to a decrease in the tunnelling distance and an increase of F .  Such 
an increase of F will shift up the resonance positions in ns(c )  as shown in figure 6 with a 
concomitant increase of the positions of the corresponding peaks in the tunnelling spectra. 

As demonstrated in our discussion of figure 4, the first peak in the calculated tunnelling 
spectra with a position below Q?, is a 'crystal-derived' barrier resonance and the higher 
lying peaks derive from 'field-induced' resonances of the sample potential. The fact that 
there is an observed peak below the vacuum level leads us to the interpretation that it is 
a 'crystal-derived' barrier resonance while the other peaks, well above the vacuum level, 
are due to 'field-induced' resonances. The observed position of the 'crystal-derived' peak 
in figure 7 seems to occur at a bias -0.5 V higher than the calculated peak position [44]. 
However, in the calculations of the tunnelling spectra, we have neglected the fact that the 
effective tunnelling occurs A - 0.2 eV below tm (see equation (2.11)). Accounting for 
that would shift the calculated peak position up in bias with A, yielding better agreement 
with experiment. Moreover, we would like to stress that the peak position is sensitive to 
the model potential used. Thus, further work on the improvement of the model potential 
both in the surface region and for the crystal would he of great interest. 

In this context, we would like to comment on the relevance of dynamical effects of 
the tunnelling through the potential barrier on the peak positions in the tunnelling spectra. 
There have bee4 some model studies on the dynamical effects of the image potential on the 
tunnelling through a potential barrier relevant for STM [45]. These studies have shown that 
there is a reduction of the contribution of the image potential to the interface potential if the 
'traversal' time for tunnelling T is stnailer than the inverse surface plasmon frequency ";PI, 
i.e., if rwSp < 1. If this regime applied in our case, a static image potential approximation 
would then give a too low potential barrier with the implication that the calculated peak 
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Figure 8. Calculated conductance 
((l/J)dJ/dV) CUNeS for different initial 
field strengths, corresponding to different 
tunel currents, for an Ir tip and an 
AI tip. The indicated held strengUls 
F apply only to the first point in each 
curve; the requirement of constant tunnel 
current throughout the calculations makes 
the field strength vary slightly with bias 
V. The lines between the points in the 
c w e s  a x  spline interpolations and serve 
primarily as guides 10 the eye. 6.0 3.0 4.0 80 

Bias (eV) 

positions would appear at a lower bias in the tunnelling spectra than in a calculation based 
on a dynamic image potential. However, we find that for the relevant tunnelling conditions 
a static approximation of the image banier potential is well justified in our model. This 
is based on the WKB result for the 'traversal' time [46], r = l/ZA, and the fact that A is 
-0.2 eV which makes wsp? = ws,/2A % 25 for AI where wsp - 10 eV. Dynamic effects 
are thus unlikely to have a major influence on the image potential here. 

4. Summary 

We have extended a previously developed model [ 141 for formation of electronic resonances 
on free-electron-like surfaces to include static external fields, thus enabling us to compare 
with scanning tunnelling spectroscopy (STS) data from such surfaces [22]. This model is 
appropriate for application on free-electron-like surfaces at energies sufficiently far from 
band gaps. The crystal reflectivities obtained in our approach and from the often used two- 
band model are compared and it is found that the two-band model underestimates seriously 
the reflectivity of the crystal at energies far from the band gap considered. 

We demonstrate that a peak in the calculated conductance curves of Al(111), below the 
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vacuum level in a region with no projected band gaps, is a 'crystal-derived' image resonance 
introduced by the image potential and the weak scattering from the AI crystal lattice. The 
observed peak in the SIT spectra bclow the vacuum level is therefore attributed to this 
resonance. Moreover, we argue that the precise position of this peak is a sensitive test of 
the surface barrier and the crystal potential. We believe that such resonances influence the 
IPE spectra through the surface density of states and thus that IPE features can be interpreted 
in such terms and not only in terms of matrix element effects as suggested earlier [161. 
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Appendix. Derivation of the reflectivity of a semi-infinite crystal 

A l .  Born approximntion 

The scattering from a semi-infinite crystal of a nearly-free-electron metal may be described 
by a weak potential V,. and a treatment based on the first-order Born approximation which 
is justified at energies far away from any band gap. We derive the result for the reflectivity 
from a semi-infinite crystal using a local V,, but the derivation can also be done for a 
non-local and energy-dependent pseudopotential. 

The first-order Born approximation is based on the approximation of replacing the total 
wave in the integrand of the Lippman-Schwinger equation by the incoming wave as 

WB'"(r) = W,"(r) + 2 1 d3r' Go(r - r')Vc(r')WiD(r') (AI) hz 

where YBom(r) is the total wave, Y,"(r) = eik' ' is the incident wave with k,, c 0 with the 
crystal side on z c 0. The two-dimensional scattering geometry makes it convenient to use 
a wavevector expansion parallel to the surface of the retarded free-particle Green function 
given by 

where k, and kll denote the momentum components perpendicular and parallel to the surface, 
respectively. For the propagating waves, we have kll c k, and k,  = while for thc 

evanescent waves kll > ki and kz = i m .  

u(T) ,  located at atomic sites T,, as 
The crystal potential, Vc(r) ,  in (Al )  is now expressed as a sum over atomic potentials, 

After inserting this sum into (Al)  and using the wavevector representation in (A2), the sum 
over n factorizes into an atomic form factor and a structure factor as 

" J  n 
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By making use of the translational symmetry of the semi-infinite system of atoms with one 
atom in each unit cell, the structure factor in (A4) can now be expressed as 

where a and b are surface base vectors for atom within an atomic layer parallel to 
the surface, c is a vector connecting an atom to another neighbouring atom in the next 
atomic layer further into the crystal, and 91, is a reciprocal surface lattice vector. The 
delta functions in (A5) reduce the scattered wave, YScatt, outside the crystal to a sum over 
outgoing plane waves with wavevectors kf satisfying the two-dimensional Bragg condition 
that kfll - kill = 911 and we obtain the result 

yScaE(T) = f ( s c  = hll+ 911 + ,/w~ ki) (A6) 
911 

where the scattering amplitude f (kf, ki) (or rc) is given by 

Note that there is a sign error in the exponent in equation (3), corresponding to the expression 
in (A7), of our previous work [14]. In the more general situation for non-local potentials, 
where we still can express the crystal potential as a lattice sum over the atomic potentials 
as in (A3). the derivation still goes through with u(kf - ki) replaced by (kflulki) in (A7). 

A2. Connection between the two-band model and the Born approximation 

We will here show how the reflectivity obtained in a two-band model as e.g. applied by 
Radny to AI [I51 is related Io !he result in the Born approximation. In particular, we 
will demonstrate that a two-band model can seriously underestimate the reflectivity outside 
a band gap. We will consider a situation most appropriate for the tunnelling experiment, 
normal incidence and specular scattering, corresponding to the restriction kll = 0 and kil = 0 
for the incident and scattered wave, respectively. 

In a two-band model the Schrodinger equation for an electron in an infinite crystal is 
solved in the basis of two plane waves, e-jkbZ and e-i(khh-g)z, 

(As) 
where g is a reciprocal lattice vector normal to the surface. We will be primarily concerned 
with the case of g = 2n/d where d is the perpendicular distance between the atomic planes. 
The amplitudes a and b and the electron energy E are determined from an eigenvalue problem 
as 

-ikhz + be-i(kb-~lT y b ( Z )  = a e  

and 

where V, is the Fourier component of the crystal potential corresponding to the wave vector 
g. In particular, at the zone boundary, kb = g/2,  a band gap opens up with a width 21 V, I 
at the energy E, (g/2)'/2. 

The reflectivity, r,, of the semi-infinite crystal is now obtained by matching, at the 
surface (z = 0). an incident and reflected plane wave in free space, Y(z) = e-"z + 
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r,eixr, z > 0, to the two-band solution % ( Z ) .  In this work we are only concerned with the 
case where the energy is far away from the band gap, I E  - cgl >> 21V8[ where kb 2 k .  In 
this limit, rc is small and proportional to the amplitude of the wave e-'(b-a)r in the crystal 
(rc = @/a)k/W))), 

where V, has been expressed in terms of U@) and the volume, V ,  of the primitive cell, 
V = l ax  b[d.  Using the same value for V, % 0.24 eV as Radny [ 151 for g = 2 n (  1, I ,  I ) /a  
of the Al(11 1) surface, we obtain a reflectivity amplitude of only about 1.1% at an energy 
close to the vacuum level, to be compared to the about IO times larger amplitude obtained 
in the Born approximation. Note that the pseudopotential form factor [33], as used in the 
Born approximation, reproduces correctly this value for V, which agrees with the measured 
band gap. 

In order to understand the origin of the different magnitudes of r,, we make a comparison 
of the reflectivity obtained in the two-band model with the result in (A7) from the Born 
approximation. According to (A7). the Born approximation for the reflectivity is given by 

This result reduces to the result in the two-band model if the following two conditions are 
fulfilled: (i) lk-g/21 << g /2  and (ii) u(2k)  M u(g).  Condition (i) allows aTaylor expansion 
of the exponential function in equation (A12) around k = g /2  which simplifies r, to 

1 u(2k)  r p m  - 
V k(2k - g)' 

The only difference between the results in the Born approximation and the two-band model, 
equations (A13) and (A1 I), respectively, is that i n  the former case the atomic form factor 
is probed at the actual momentum transfer, while in the latter case the argument for the 
form factor is fixed at a momentum transfer corresponding to the reciprocal lattice vector 
g. Hence the two results agree if the condition (ii) is also fulfilled. 

The prime reason for the breakdown of the two-band model for describing rc close to 
the vacuum level of Al(l1 I )  is that the condition (ii) is violated. u(2k)  is about a factor 
of six larger than u(g)  at the relevant range of k [33] ( k  M 3g/4), which accounts for 
most of the discrepancy between the reults for r, in the two-band model and the Born 
approximation. Moreover. the restriction of the two-band model to include only two plane 
waves is simply not justified to describe weak scattering far away from band gaps. This can 
be understood from the fact, that when including additional plane waves from higher-order 
reciprocal lattice vectors in equation (As), the corresponding contributions to r, will be of 
the form given in equation (AI 1) for energies far away from band gaps. However, these 
additional contributions can be sizable since each one decays slowly away from the band 
gap introduced by the corresponding vector g. The primary aim of the two-band model is 
rather to describe the opposite situation of strong scattering close to a band gap. 
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